FROM ONTOLOGY TO INFERENCE: A COMPUTATIONAL PHILOSOPHICAL FRAMEWORK OF IoT-ML FOR READING THE MATURITY AND VOLUME OF PALM OIL

Authors

  • Ratu Mutiara Siregar Institut Teknologi Sawit Indonesia
  • Andi Prayogi Institut Teknologi Sawit Indonesia
  • Mahyuddin KM Nasution Universitas Sumatera Utara

DOI:

https://doi.org/10.47199/jaf.v7i2.403

Keywords:

IoT; machine learning; ripeness detection; oil yield prediction; philosophy of computation.

Abstract

The timing of harvesting in oil palm plantations necessitates objective and rapid ripeness assessment, coupled with an estimation of extractable oil volume. This paper presents a philosophical-computational framework with an end-to-end architecture integrating Internet of Things (IoT) sensors and machine learning (ML) for the classification of fresh fruit bunch (FFB) ripeness levels and oil volume regression. The approach rests on explicit ontological and epistemological foundations, operationalizes latent targets through standardized field protocols, and implements reproducible ML practices. We delineate a multimodal pipeline (RGB imagery + environmental sensors + weight), a late fusion modeling strategy (CNN embeddings + tabular features), and an evaluation design that emphasizes cross-block generalization, model explainability, and drift monitoring. Performance targets include an F1-macro ≥ 0.88 for ripeness classification and a Mean Absolute Error (MAE) ≤ 4 ml/kg for oil volume regression on out-of-block data. Discussions also encompass the ethics and axiology of transparency, data governance, and economic impacts, along with future directions such as federated learning and portable hyperspectral integration.

Downloads

Download data is not yet available.

References

A. Issa, S. Majed, S. Ameer, and H. M. Al–Jawahry, “Farming in the Digital Age: Smart Agriculture with AI and IoT,” E3S Web Conf., vol. 477, p. 81, 2024, doi: 10.1051/e3sconf/202447700081.

A. Kalbhor, “AI and Machine Learning in Precision Agriculture: The Future of Agricultural Precision Agriculture,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 13, no. 2, pp. 648–654, 2025, doi: 10.22214/ijraset.2025.66920.

B. Baranitharan, G. Prabhkar, K. Chandran, D. K. Vairavel, R. Murugesan, and M. Gheisari, “Revolutionizing Agriculture: A Comprehensive Review of IoT Farming Technologies,” 2024. doi: 10.2174/0126662558296394240902040727.

F. A. J. Suharjito, “Annotated Datasets of Oil Palm Fruit Bunch Piles for Ripeness Grading,” Sci. Data, vol. 10, p. 543, 2023.

F. A. Junior, “Video-based oil palm ripeness detection model using deep learning (YOLOv4 series),” Heliyon (ScienceDirect), 2023.

G. E. P. Box and N. R. Draper, Empirical Model-Building and Response Surfaces. New York: Wiley, 1987.

H. Basri, “Implementasi Sistem Irigasi Cerdas Berbasis IoT dan Machine Learning pada Pembibitan Pala di Papua Barat,” J. Ilm. Edutic Pendidik. dan Inform., vol. 8, no. 2, pp. 89–96, 2022, doi: 10.21107/edutic.v8i2.12393.

I. Motta, N. Vuillerme, H. Pham, and F. A. P. de Figueiredo, “Machine learning techniques for coffee classification: a comprehensive review of scientific research,” 2024, Springer Science+Business Media. doi: 10.1007/s10462-024-11004-w.

M. K. Nasution, Pembelajaran Linguistik Komputasi: Menaksir Kemampuan Diri. 2025.

M. K. Nasution, Pembelajaran Perolehan Informasi & Penambangan Data: Menaksir Kemampuan Diri, vol. 1. 2025.

M. Mitchell, Artificial Intelligence: A Guide for Thinking Humans. New York: Farrar, Straus and Giroux, 2019.

M. Tan and Q. V Le, “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,” in Proceedings of the 36th International Conference on Machine Learning (ICML), 2019, pp. 6105–6114.

N. Khan, B. H. Baharudin, and R. Abdullah, “Oil palm and machine learning: Reviewing one decade of ideas, innovations, applications, and gaps,” Agriculture, vol. 11, no. 9, p. 832, 2021, doi: 10.3390/agriculture11090832.

P. Tropis, R. M. Siregar, M. Akbar, S. Pane, and R. Dian, “Indonesian Journal of Computer Science,” vol. 13, no. 1, pp. 4906–4921, 2024.

R. M. Siregar, B. Mulyara, R. Dian, M. Maisarah, M. A. S. Pane, and A. Prayogi, “Design of Control System and Temperature in Coffee Dryer Arduino Based Automatic Using Fuzzy,” JITK (Jurnal Ilmu Pengetah. dan Teknol. Komputer), vol. 10, no. 3, pp. 634–642, 2025, doi: 10.33480/jitk.v10i3.6166.

S. B. Dhal, “Optimizing Biofuel Production: Integrating NIR Imaging and Machine Learning for Corn Stover Characterization,” OSTI OAI (U.S. Dep. Energy Off. Sci. Tech. Information), 2024, [Online]. Available: https://www.osti.gov/biblio/2478060

S. M. Lundberg and S.-I. Lee, “A Unified Approach to Interpreting Model Predictions,” in Advances in Neural Information Processing Systems (NeurIPS), 2017, pp. 4765–4774.

S. Puttinaovarat, S. Chai-Arayalert, and W. Saetang, “Oil Palm Bunch Ripeness Classification and Plantation Verification Platform: Leveraging Deep Learning and Geospatial Analysis and Visualization,” ISPRS Int. J. Geo-Information, vol. 13, no. 5, p. 158, 2024, doi: 10.3390/ijgi13050158.

V. G. Lekshmy, P. Vishnu, and P. Harikrishnan, “Adaptive IoT System for Precision Agriculture,” in Lecture notes in networks and systems, Springer International Publishing, 2022, pp. 39–49. doi: 10.1007/978-981-16-6723-7_4.

Y. E. García-Vera, “Hyperspectral image analysis and machine learning applications in agriculture: A review,” Sustainability, vol. 16, no. 14, p. 6064, 2024.

Downloads

Published

2026-02-19

How to Cite

Siregar, R. M., Prayogi, A., & Nasution, M. K. (2026). FROM ONTOLOGY TO INFERENCE: A COMPUTATIONAL PHILOSOPHICAL FRAMEWORK OF IoT-ML FOR READING THE MATURITY AND VOLUME OF PALM OIL. Jurnal Agro Fabrica, 7(2), 134–140. https://doi.org/10.47199/jaf.v7i2.403